Energy-based constitutive modelling of local material properties of canine aortas

نویسندگان

  • Kaveh Laksari
  • Danial Shahmirzadi
  • Camilo J Acosta
  • Elisa Konofagou
چکیده

This study aims at determining the in vitro anisotropic mechanical behaviour of canine aortic tissue. We specifically focused on spatial variations of these properties along the axis of the vessel. We performed uniaxial stretch tests on canine aortic samples in both circumferential and longitudinal directions, as well as histological examinations to derive the tissue's fibre orientations. We subsequently characterized a constitutive model that incorporates both phenomenological and structural elements to account for macroscopic and microstructural behaviour of the tissue. We showed the two fibre families were oriented at similar angles with respect to the aorta's axis. We also found significant changes in mechanical behaviour of the tissue as a function of axial position from proximal to distal direction: the fibres become more aligned with the aortic axis from 46° to 30°. Also, the linear shear modulus of media decreased as we moved distally along the aortic axis from 139 to 64 kPa. These changes derived from the parameters in the nonlinear constitutive model agreed well with the changes in tissue structure. In addition, we showed that isotropic contribution, carried by elastic lamellae, to the total stress induced in the tissue decreases at higher stretch ratios, whereas anisotropic stress, carried by collagen fibres, increases. The constitutive models can be readily used to design computational models of tissue deformation during physiological loading cycles. The findings of this study extend the understanding of local mechanical properties that could lead to region-specific diagnostics and treatment of arterial diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Young’s Modulus of Aggregated Carbon Nanotube Reinforced Polymer

Prediction of mechanical properties of carbon nanotube-based composite is one of the important issues which should be addressed reasonably. A proper modeling approach is a multi-scale technique starting from nano scale and lasting to macro scale passing in-between scales of micro and meso. The main goal of this research is to develop a multi-scale modeling approach to extract mechanical propert...

متن کامل

Modification of exponential based hyperelastic strain energy to consider free stress initial configuration and Constitutive modeling

In this research, the exponential stretched based hyperelastic strain energy was modified to provide the unstressed initial configuration. To this end, as the first step, the model was calibrated by the experimental data to find the best material parameters. The fitting results indicated material stability in large deformations and basic loading modes. In the second step, the initial pseudo str...

متن کامل

Nonlinear Vibration Analysis of Composite Plates with SMA Wires, Considering Instantaneous Variations of the Martensite Volume Fraction

In the past few years, extensive improvements have been accomplished in reinforcing the structures through using shape memory alloys (SMAs). These materials absorb or dissipate energy through establishing a reversible hysteresis loop during a cyclic mechanical loading. This unique characteristic of the SMAs has made them appropriate for sensing, actuation, absorbing the impact energy, and vibra...

متن کامل

Modelling Mechanical Properties of AISI 439-430Ti Ferritic Stainless Steel Sheet

The comprehension of the anisotropy impacts on mechanical properties of the rolled steel sheets was investigated using a non-quadratic anisotropic yield function. In this study, experimental and modelling determination regarding the behaviour of an industrial rolled sheet for a ferritic stainless low-carbon steel were carried out. The parameters of the associated yield equation, derived from th...

متن کامل

Numerical modelling of the underground roadways in coal mines– uncertainties caused by use of empirical-based downgrading methods and in situ stresses

Numerical modelling techniques are not new for mining industry and civil engineering projects anymore. These techniques have been widely used for rock engineering problems such as stability analysis and support design of roadways and tunnels, caving and subsidence prediction, and stability analysis of rock slopes. Despite the significant advancement in the computational mechanics and availabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016